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For a model given previously by the authors describing a structural phase 
transition we compute the q-mode critical fluctuations of momentum and 
displacement as a function of the critical temperatures, the wave vector q, and 
a fading-out external field. An explicit dependence on the rates of fading out 
is obtained. In order to define the critical fluctuation operators we prove a 
reconstruction theorem, which is of model-independent value. Finally we study 
the critical spectrum and get rigorous results on the soft modes and the central 
peak. 
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1. I N T R O D U C T I O N  

This  is the second paper ,  fol lowing refi 1, in which  we s tudy  the crit ical 
f luc tuat ions  in a n  exactly soluble  mo d e l  for a q u a n t u m  a n h a r m o n i c  crystal.  
The mode l  and  its t h e r m o d y n a m i c  proper t ies  are s tudied  in  refs. 2-4;  it 
describes a s t ruc tura l  phase t rans i t ion .  ~5~ M o r e  precisely, this mode l  is a 
lattice p h o n o n  mode l  cons is t ing  of an  a n h a r m o n i c  crystal  in which  one-si te  
a n h a r m o n i c i t y  terms are t rea ted in its q u a n t u m  spherical  app rox ima t ion .  
The mode l  has a c o m b i n a t i o n  of  shor t - range  in te rac t ions  and  long- range  
in te rac t ions  of  the spherical  type. I t  shows s p o n t a n e o u s  symmet ry  b reak ing  
and  the order  p a r a m e t e r  is the d i sp lacement  f rom the latt ice equ i l i b r ium 
posi t ion.  , 
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The fluctuations on the critical line in the phase diagram are 
considered in ref. 1 with a special eye on the specific quantum nature of 
these fluctuations. In particular a new phenomenon is discovered, namely 
the squeezing of the momentum fluctuation operator, which forms a 
canonical pair with the critical displacement fluctuation operator. This 
happens at T c = 0, which can be considered as a pure quantum phase 
transition. 

In this paper we deal with further properties of the critical fluctuations. 
Recently ~6~ we computed the q-mode magnetization fluctuations as a func- 
tion of the temperature, the wave vector q, and a fading-out external field 
for the Curie-Weiss model. Even for the most trivial model new classes of 
probability distributions are obtained which are generated by the external 
field. New critical behavior is obtained in terms of the rate of fading out of 
the field. By taking a particular long-wavelength limit (q ~ 0) one obtains 
also interesting rigorous information about the magnetic susceptibility. In 
Section 3 of this paper we derive analogous results for the anharmonic 
quantum crystal model. The critical exponents of the displacement and 
momentum fluctuations are computed as a function of the rate of fading 
out of the extemal field in the long-wavelength limit. We find critical 
behavior in terms of both rates of decrease with the volume. 

Section 3 contains also a reconstruction theorem defining these fluc- 
tuations as operators on a Hilbert space. This is useful in order to consider 
the quantum nature of fluctuations. In the case of normal fluctuations, it is 
proved that these fluctuations are representations of a Bose field. <7'8) Here 
we extend this result to critical abnormal fluctuations. These results have 
a model-independent value. 

Finally, in Section 4, we start with the study of the dynamics of the 
algebra of fluctuation operators. A rigorous derivation is given of the 
phonon spectrum not only for the case that the wave vector q ~ 0, but also 
in the long-wavelength limit q ~ 0. We derive some results about the soft 
modes and the so-called central peak problem/5) 

2. THE MODEL 

Let 3r =L2(~) and Z a be the d dimensional cubic lattice; let Q and P 
be the usual canonical observables of multiplication and differentiation on 
Y: such that [ Q, P]  = i (h = 1). For each finite volume A of 7/d, the model 
Hamiltonian is given by ~2'3) 

(2.1) 
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where V= #A,  h#eR, 

1 a I 

 A= m,X A Z Q,, 2 4 I,I'~A 

and {a.e,} is a copy of {Q,P} at the site le#_a; the potential r is 
supposed to be of finite range and the term W is meant to include the one- 
site anharmonicity. For example, we take here W(x)=�89 
b, q > 0 and b sufficiently large. (z) The model has been introduced in order 
to describe structural phase transitions in the self-consistent phonon 
framework.(5) 

In this section we follow closely the presentation of ref. 1. 
The model is soluble in the sense that for all temperatures the free 

energy density and all thermal averages can be calculated. Take for A the 
hypercube A with periodic boundary conditions 

A= lff~- d -  < 12 -,~-~-, 0t = 1 d 

and denote the dual volume 

A * =  q q~,=--n~,;n~=O,+l, + - 1  +-~--;c~=l, d 
N ~  - -  . - - ,  _ , . . .~ 

In the thermodynamic limit A ~ 7] a, the model is described by the 
effective Hamiltonian 

H~ = TA + Wt(CA) 2 Q~- Z h,Q, 
tEA I~A 

(2.2) 

where cA is determined by the self-consistency equation 

CA=(~I~A Q~)H t ( 2 . 3 )  

The notation ( . ) n o  is used for the thermal average corresponding to the 
effective Hamiltonian (2.2). The essential property of this state is that it is 
a generalized free state. It is completely characterized by the one- and two- 
point functions.. Moreover, because of the time-reversal invariance, the 
state is characterized by the expectation values 

< QI>H~ <Q~, Qr>Ho, <P,, Pt'>~r" 

If the external field h = 0, then the model has the 7]  2 symmetry, i.e., the 
local Hamiltonians are invariant under the substitution Q j ~ - Q I .  The 
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model has been invented in order to describe the phenomenon of the 
spontaneous breaking of this symmetry and of the softening of the phonon 
mode. One considers first h # 0 and then discusses the limit h ~ 0. 

The study of the phase diagram of the model is reduced to the study 
of the solutions of Eq. (2.3) in the thermodynamic limit A --* 7/a and in the 
limit h--, 0. Equation (2.3) becomes the following equation for the order 
parameter c = lim A cA : 

where, for ht = h, 

with 

c = p +  Ia(c, T, 2) (2.4) 

p = l i m [  1 2 cothfl2[A(ca)]l/2 h ~ ]  
A V2[A(cA)] 1/2 2 + 

2 r coth [ fl2Oq(C)/2 ] 
Id(C, T, 2) = (--~n)a I dq J~a 2,(2q(c) 

1 
2 =  

2+A(c) O~(c) =% 
d(c) = a + 2 W'(c) 

COq2 = r r 

and r is the Fourier transform of the interaction r 
The stability of the model is expresed by t'22q(C)/> 0 for all c ~> 0. Define 

c*=inf{c[c>~O; A(c) >~0} (2.5) 

Then A(c*)=0. Hence the domain of the order parameter c=c(T, 2) as a 
solution of (2.4) is the interval [c*, ~) .  

For fbxed c*, i.e., for a fixed potential W and for h , = h - - 0 ,  the 
equation 

c* = Ia(c*, T, 2) (2.6) 

defines a unique curve 2c(T) or To(2) separating the (T, 2) plane into two 
disjoint parts. In terms of the temperature, if T >  To(2), then p = 0 in (2.4); 
this is the one-phase region. If T <  To(2), then p > 0  in (2.4); this is the 



Quantum Fluctuations in an Anharmonic Crystal Model 381 

two-phase region, where the 7/2 symmetry is spontaneously broken, and 
one has 

( Q 0 ) •  lim l'An'nl ( ~ )  h ~ +o V Qt ~ 0 lEA H e 

In this paper we discuss the fluctuations of QI and Pj on the critical 
line To(2). 

3. CRITICAL FLUCTUATION OPERATORS 

As far as our model (2.2)-(2.3) is concerned, the basic observables 
are the local displacements a = { a,} and the conjugate momenta P = { Pt}. 
Moreover, these observables are also left globally invariant by the 
dynamics (2.2). Therefore we will consider the fluctuation operators of 
displacement and momentum on the critical line, together with its 
dynamics. The dynamics is postponed to the next section. 

The local fluctuation operators in the q-mode, q ~ ~a, are defined by 

1 
Fq~.A(Q) - Vt/2+6 ~ ( a , - ( Q t ) H o ) c o s q . l  (3.1) 

lEA 

1 
Fq',a(P) - VI/2+o ' E (Pl-- (P t )n~  cos q. l (3.2) 

lEA 

The problem is to give a meaning to the limits 

lim rq~.a(Q) - F~(Q) and lim Fq6,,A(P) - r q , ( P )  (3.3) 
A A 

which we simply call the fluctuation operators. 
First of all we determine the parameters 6 and 6' such that the variances 

of the operators exist and are not trivial, i.e., such that 

0 < lim ( F q  A(Q)2)  no < oo (3.4) 
A 

0 < lim (Fq,,A(P) ~)/~~ < oO (3.5) 
A 

If 6 = f i '=  0, then the displacement as well as the momentum will be called 
normal fluctuation operators. If 6 5 0  and/or O' 5 0  they will be called 
critical or abnormal. For this model it will turn out that in all situations 
fi+O' ~>0. Therefore we will limit ourselves here to this situation in 
developing the mathematics in order to give a mathematical meaning to 
the fluctuation operators (3.3). 
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In ref. 1 we considered the fluctuations (3.2) and (3.2) also on the 
critical line T =  To(2), but for h = 0 and q = 0. Also, we did not go into the 
details of the mathematics in order to give a full definition of the limiting 
fluctuation operators. Therefore our objective here is to fill in this gap and 
also to scrutinize the properties of the fluctuation operators in the limits of 
a fading-out field h ~ 0 and of a wave vector q---, 0. 

T h e o r e m  3.1 (Central Limit Theorem). Suppose that 3 and 3' are 
given such that (3.4) and (3.5) are satisfied. For T =  To(2)>/0, then for all 
h and q the distributions of the displacement and the momentum are 
Gaussian and given by 

lima (exp i2F~,A(Q)) m = exp - ~- liana (F~.A({?)2) H' 

lim.~ (exp  i2F~,A(P)) m = exp - -~- liAm (F~ ,a (P)  2) H~ 

Proof. Consider the Hamiltonian H~ and the Fourier transforms: 
for keA*, 

1 
Q(k) = ~ I~A Qle -'~t, 

1 
P(k) = ~ 1 ~ ,  t Pte -ikl 

Then 

H~= ~ H~(k) 
k ~ A *  

where 

1 ~2  H~(k) = 2~ P(k) P(-k)  + ~ mf2k(C ) Q(k) Q(-k) 

1 
- ~  [Q(k) h ( - k )  + Q ( - k )  h(k)] 

with 

1 
h( - k  ) = - ~  t~n hleikt 

m~.(c) = (2~(c) 
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Remark that 

[H~(k), H~(k')]  =0  

1 
FqA( Q) =~V7 { Q( q) + Q(-q)  - (Q(q) + Q( -q ) )  HO} 

with the same for the P-fluctuation, and that H i is a function at most 
quadratic in the Q(k) and P(k), such that the computation of the Q- and 
P-distributions become a one-mode computation in a quasi-free state 
( " )  n,. The result is obvious. | 

This central limit theorem settles the problem of the sense in which the 
limits in (3.3) should be taken. Remark that these limits depend on the 
sequence A ~ Z a of equilibrium states one is taking. This dependence is one 
of the issues of this paper; see further. But we will first characterize the 
limits Fq(Q) and Fq~,(P) of (3.3) as well-defined mathematical objects. In 
order to do that we use a specific reconstruction theorem, an extension of 
the one proved in ref. 7 for the case of normal fluctuations. 

Consider the real two-dimensional vector space H generated by the. 
operators Q and P on ~2(R), and the symplectic form aq defined for all 
qE.~ d and 6+~ ' />0  by 

aq(Q'P)={~ (q) ifif 3+6'=06+d;,>0 (3.6) 

where 

and 

a(q)=liA m 1 {�89 if q~O 
"-VI~A cOsEq'I= 1 if q = 0  

aq(Q, Q) = aq(P, P) = 0 

Remark that in fact for A =0cQ+flP, B=o~'Q+fl'P, or, o~', fl, fl'~ R, 

ao(A, B) = i(flo~'-o~ff) lira ( [vq a(Q), rq, a(P)] )no 
A 

Denote by "W(H, aq) the Weyl algebra (6~ of the canonical commutation 
relations generated by the Weyl operators { W(A)[A ~H}, satisfying the 
product rule 

i 
W(A) W(B) = W(A + B) exp - ~  aq(A, B) (3.7) 

We have the following theorem. 



384 

T h e o r e m  3.2 (Reconstruction Theorem).  
denote 

Then the limits 
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For  each A = oLQ + tiP e H 

FqA(A) = v~FqA (o) + flF~,,a(P) 

lim ( e x p  iFq(A))m 
A 

defined in Theorem 3.1 define a quasi-flee state co~, of "Ir trq): 

where 

co,q(W(A)) = e x p  -- �89 A) 

Sq(A, /tl ) : ~2 lim ( FqA( Q)2 ) uo + f12 lim (Fq~,,A(P) 2) no 
A A 

Proof. The existence of the quasi-free state ~o~. follows from Theorem 
3.1, namely the Gaussian form of the distribution, and from Schwartz '  
inequality expressed in the form 

I t tTq (A  ' B)12<<,sq(A, A)sq(B, B) 

(see, e.g., ref. 9). This proves the statement. II 

This theorem characterizes the limiting fluctuation operators  (3.3). 
The state co,q on the CCR-algebra  ~ ( H ,  aq) determines by the G N S  
construct ion a representation n on a Hilbert space ~ and a cyclic vector 
g2 such that  

cnsq( W(A )) = (D, ~(W(A))(2) = exp - �89 A) 

Remark  that  the state cosq is a regular state, so that  the existence of Bose 
fields is guaranteed: 

where 

re(W(A)) = exp iFq(A) 

~Fq(Q) if A = Q  
Fq(A)=[Fq~,(P) if A = P  

are the Bose fields on ~ satisfying the commuta t ion  relation 

[F,~(Q), F~,(P)]  = iaq(Q, P) 

where aq(Q, P) is given by (3.6). 

(3.8) 
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Now we identify in a mathematically rigorous way the fluctuation 
operators by means of Theorems 3.1 and 3.2 up to the solution of (3.4) and 
(3.5), which should fix the values of 3 and 3'. Now we proceed with the 
explicit computation of these indices on the critical line. In particular we 
consider their dependence on the limits h ~ 0 and q ~ 0. 

The self-consistency equation (2.3) plays of course an essential role in 
this computation. A straightforward computation yields for (2.3) 

h 2 1 ). B 2  
ca - AZ(cA~ + V2[A(ca)] ,/2 coth c_~ [A(CA)] ,/2 

+ I k ~ a .  c o t h .  212k(CA) �89 (3.9) 

k~0 

where Ok(Ca) = [A(ca) + co~] 1/2. 
Remark that cA depends on To(2) and on h, that for short-range inter- 

actions one has co k ~ s- k + O(k 2) for k ~ 0, and that limb ~ 0 lima cA(T~, h) 
= 0 .  

Using the diagonalization of H~ used in the proof of Theorem 3.1, 
one computes straightforwardly that 

1 )" coth 2flr (3.10) 
(Fq'A(Q)2) ~ ~  V 2~ 2~Qq 2 

1 Am s coth/~flc(~)~2q 
(F~"A(P)2)H' -  V 2~' 2 q 2 (3.11) 

T h e o r e m  3.3. Suppose that To(2)>0; then one gets the following 
results for 3 and 3' such that (3.5) and (3.5) are satisfied: 

(i) I fq:~0,  then 3 = 3 ' = 0 .  

(ii) If h:/:0, then again 3 = 3 ' = 0 .  

(iii) If q = 0  and h ~ 0 ,  such that h=l~/V~',o~>~O, one gets 

o3d=3={!0( for 0~<c~<~=cz c (d=3)  
~ for ~<~  

~o~/3 for 0~<ct<]-o% (d=4)  
3d~>4 = ~I  for ~<0~ 

and  3' = O. 
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(iv) I f h = O a n d q ~ O ,  such that q = O/ W, y >~ O, then 

i for �89 
6a=3= for 0 ~ < 7 < ] = 7 c  (d=3)  

{i  for �88 
6d~>4= for 0-%<7<�88 (d~>4) 

and 6 '  = O. 

(v) If now h=fl/V ~ and q=O/W, then 

6 = min{ r/, y} 

where 

f! a for 0~<0c< ~ 
~d=3 = <~ for ~<oc 

f !  ~ f~ 0~<~ 
~ for �88 

and 6' = 0. 

Proof. Consider first the easy case of the index 6' in the q-mode 
momentum fluctuation operator. Because of the formula (3.11), the cases 
(i)-(v) reduce to two cases Dq> 0 or limq~o s = 0. In both cases there is 
only one solution 6' for the conditions (3.5) to hold, that is, 6 ' =  0. 

Consider now the q-mode displacement fluctuation operator. If q :~ 0, 
then Ogq > 0, and the limit (3.10) will be nontrivial only if 6 = 0. 

This proves (i). 
If h ~0,  then it follows from (3.9) that lima CA >C* [see (2.5)], i.e., 

lima A(ca)> 0. Therefore (3.5) has only the solution 6 = 0. This proves (ii). 
If we take h=f~/V ~, ~>~0, then Eq. (3.9) becomes 

C A = 

i 2 1 2 ~ _  
V2~A2(ca ) t- V2[A(ca)]w2coth [A(ca)] w2 

+lk~ ,a .  coth �89 C C a ) 

k # 0  

(3.12) 

At To(2) one has that lima ca(To, fT/V ~) =0. Therefore one can follow the 
argumentation as in the proof of Proposition 4.3 of ref. 1, but with the 
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modification due to the presence of the first term in the right-hand side 
of (3.9): 

cA - c *  + [c* --I,,(CA, T~, ~.)] 

+I l a ( c A ' T c ' 2 ) - I  )-" 2t2k('t CA---------~ coth 1 fl~2f2k(CA, ] 
v k ~  o z j 

V2[A(cA)] i/2 coth ~ [A(cA)] I/2 

~ T~(~) 

~ - ( ~ )  + V,J(CA--------) (3.13) 

for large V. Therefore, if ~ >/1, the behavior is determined by the second 
term and we get the result of ref. 1, corresponding to the case h = 0. Hence 
we limit here our considerations to the case ~ < 1. Using the asymptotics 

( A(CA) 1/2, d= 3 

c* --ld(Ca, To, 2) "" ~A(CA) Iln A(CA)I, d = 4  (3.14) 
I 

(A(CA) , d > 4  

for A(CA)~ 0, r one finds the results (iii). 
If now h = 0 and q =  O/V y, y>~O, then the proper choice of the expo- 

nent 6 reduces to considering (3.9) with h = 0. From ref. 1, one gets that 
z~(CA)"~ V -2/3 (d=3) ,  A(CA)=(VI/21n V) -l (d=4) ,  and A(CA)"~ V -1/2 

(d>  4) for V--, ~ .  One finds the result (iv). 
Finally, consider now the case q - -~ /V y and h--h/V",  ~ >~ 0, y/> 0. 

From (3.10) and the definition of 12q, it is clear that the exponent 3 is 
determined by the slowest of the two asymptotics A---, 0 or CO2q---, 0. Let 
A(CA) ~-- V-2"; one gets grom (3.13) that r/= 3a, where 6d is as given in (iv). 
Then combining this with the results of (iv), one gets (v). | 

There are a number of remarks to make. 
In the theorem we proved that the momentum fluctuation operator is 

always Gaussian and normal on the critical line for Tc > 0. On the other 
hand, the displacement fluctuation operator is Gaussian and normal if 
q # 0 and/or h # 0. This behavior for h # 0 was expected. The case q # 0 is 
the first quantum mechanical result analogous to what was called "fluctua- 
tions within the fluctuating field are Gaussian ''(1 ~) in the case of the Curie- 
Weiss model. For a complete understanding of this phenomenon in this 
classical model see ref. 6, where it is proved that nontrivially modulated 
(q ~ 0) fluctuations are always Gaussian and normal. 
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The theorem yields also results if one considers particular fadings out 
of the external field in the form h =/~/V s. This means that the external field 
tends to zero when the volume increases to infinity. The theorem shows the 
phenomenon that the critical exponent depends on the parameter 0~ if a < 
at(d), where a~(d) does appear as another critical parameter which depends 
on the dimension. If the external field drops off too fast, i.e., a >/a~(d), then 
no effect coming from the presence of the field is seen. It is as if there was 
no field. On the other hand, if the field is more persistently present, it 
influences very much the volume level at which the fluctuations do appear. 
If 0 < a < 0%(d) all fluctuations are Gaussian, but abnormal or critical. In 
principle the same phenomena happen if q--* 0, and there is a competition 
between the q--* 0 and the h---, 0. If one takes q = ?glV ~', there is also a 
critical value y~(d) for the exponent y, such that the long-wavelength limit 
with a rate 0 < ? < yc(d) creates a dependence of the fluctuation abnormality 
6 on the rate y. So far we have considered the results on the critical line 
for T~(2)> 0; it remains to consider the case T~(2= 2~)= 0 for the pure 
quantum critical fluctuations. 

T h e o r e m  3.4. If To(2 = 2c)= 0, then the displacement fluctuation 
operator has an abnormal Gaussian distribution with the exponent 6 > 0, 
depending on the rate a of the fading-out external field and on the rate ~, 
determining the long-wavelength limit. On the other hand, the momentum 
fluctuation operator has a subnormal Gaussian distribution with exponent 
6 ' = - 6 .  

Proof. The critical fluctuations at Tc(2c)=0 are obtained as the 
lim~_~ c To(2) of the corresponding ones at To(2 <2c). Then the theorem 
follows from (3.11) yielding at Tc(2c) = 0  

1 2c 
( Fq~.A(Q)2) m - VZa 2 ~  a 

1 2~m ~q 
( F ~ " A ( P ) 2 ) n ~  V 2~' 2 

From this it follows immediately that 6 ' =  - 6  in all cases. It remains to 
look for, e.g., 6. But this is obtained analogously as in the proof of 
Theorem 3.3(v). We get straightforwardly 

'--mini, } 
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where p is again determined by the self-consistency equation (3.9) or (3.12), 
(3.13), for fl = or, and is given by 

t !~ if 0~<0c<~=ac ( d = 2 )  5 
P d = 2 = "  ! i f  45-~<0~ k 4  

t!0c if O~<oc<l=~c  (d~>3) 
Pd~>3 ~--- ~ if l~<ot 

This proves the theorem. 1 

It is clear that the case To(2 c) = 0 yields different exponents ~ than in 
the case To(2 < 2 c) > 0. Nevertheless the exponents depend also on the rates 
of fading out of the extemal field as well as on the rate of the long- 
wavelength limit. As in ref. 1, we have the phenomenon of squeezing of the 
momentum fluctuation operator and a nontrivial commutation relation 
between the displacement and momentum fluctuation operators. 

4. FLUCTUATION DYNAMICS,  SOFT-MODE, AND 
CENTRAL PEAK PROBLEMS 

In this section we consider the dynamics of the fluctuation operators 
{Fq(A) [ A ~ (H, aq)} induced by the microscopic dynamics of the model 
(2.1) or rather (2.2). 

The general setup of such a fluctuation dynamics is given in ref. 8 for 
normal fluctuations. Here we are mainly interested in the critical dynamics 
of our model, i.e., on the critical line. 

For a local microscopic observable, say A, its time evolution is given 
by the Heisenberg equation 

~,(A) = l ime "[nA'' ]A 
A 

in integrated form or by 

d 
-~o~,(A) =lima i[ H A, 0c,(A)] 

where the limit is taken in the norm or weak operator topology sense. Here 
we will use the dynamics defined by the effective Hamiltonian H ~ ,  (2.2). 

Following the general theory of ref. 8, this time evolution induces 
a dynamics of the fluctuation operator algebra defined by Theorem 3.2. 
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In particular we define the evolution 0~, of the fluctuations by the 
formula 

~t Fq(  A ) = lira Fq ( eim~ Ae - i ,~)  
A 

= lim ei'l~Ae-i'n%Fq(A) e -i'l-t~ (4.1) 
.4 

where lim A is in the sense of the Central Limit Theorem 3.1. Formula (4.1) 
can of course also be expressed in its differential form. 

The first thing we have to check is whether Theorem 3.1 is valid in this 
case. It is indeed valid because of the particular situation of our model. The 
Hamiltonian H I  is nothing but a sum of local harmonic oscillator 
Hamiltonians such that for A = Q or P, their time-evolved operators are 
again local. An explicit computation yields for q 4:0 

3Fq(a)  = lim [ H  A, F,~ A(Q)] = 2 Fqa(p) (4.2) 
a ' i x/rn 

~Fq,(P) = lim [ H S ,  F,~,.,,(P) ] = i2 x//-m (2~(c) Fq,(Q) (4.3) 
A 

where lima is taken in the sense of the Central Limit Theorem. We used the 
notation 6 for (d/idi)l,=o. It is clear that the dynamics 0~, is given by 
~, = exp itS, such that in Eq. (4.2) and (4.3) the fluctuations in the left-hand 
side exist. The whole problem of the analysis of these equations is now to 
use the results for the exponents 6 and 6' derived in the previous section, 
and to find out what their values imply for the dynamics. 

First of all there is the easy situation, dealing with all results of 
Theorems 3.3 and 3.4, yielding 6 = 6'. This turns out to be the cases that 
q ~- 0 and/or h :/: 0, and then one has 6 = 6' = 0. 

Theorem 4.1. I f 6 = 6 ' ,  then the solution of(4.1) is given by 

#,,Fq~( Q) = (exp itS)Fq(O) 

Fq(P) 
= F,~(Q) cos[2g2q(C)t] + 2-~-~q(C) sin[212q(C)t] (4.4) 

and analogously for F~(P). 

Proof. It is a straightforward consequence of (4.1)-(4.3) for 
6=6' .  I 

Remark that if 6 = 6 ' = 0 ,  then 2t2q(C) is a discrete point in the 
spectrum of ~,; the eigenvectors are the normal fluctuation operators of 
displacement and momentum. This frequency coincides with the standard 
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phonon frequency g~o for the q-mode phonons in the effective Hamiltonian 
H ~ ;  here Oq = s This means that for this model of an anharmonic 
crystal, the transition to fluctuation modes for q = 0 reproduces the well- 
known phonon limit and phonon dynamics. It is clear that this result also 
holds for any q outside of the critical region, i.e., as far as the energy gap 
A(c) is strictly positive. 

New interesting phenomena do appear on the critical line T =  To(2) 
with h = O. 

T h e o r e m  4.2. On the critical line Tc(2)/>0 with h =0 ,  the zero- 
mode fluctuations are eigenfunctions of the dynamics 0~, with zero frequency; 
in particular, one has 

~F~ = 0 and 6F~ = 0 

where 6 and 6' take the values determined in Theorem 3.3. 

Proof. From Theorem 3.3 we learn that, for q ~ 0 and h-~ 0, the 
displacement fluctuation is always abnormal with critical exponent 6 > 0, 
whereas the momentum fluctuation is normal, i.e., 6' = 0. Therefore one has 
always for all q that Fq~(P) = 0. Then from (4.2) it follows immediately that 
3F~ = 0. 

The analysis of Eq. (4.3) is more delicate because the fluctuation 
operator F~ does not exist. For q = 0 ,  Eq. (4.3) can be written as 
follows: 

/ - -  A(cA) } 
6F~ i 2 x / m ~  Y', ( Q , - ( Q I ) m  

l ~ A  

(4.5) 

where the lim a has to be understood as a central limit (see Theorem 3.1) 
with h ~ 0. From the proof of Theorem 3.3(v) one gets that zl(cA) - V -z" 
and that 6 = r /> 0 (here we are in the case q -- 0 or formally ~ = oo). This 
means that the rfght-hand side of (4.5) behaves as F ~  which vanishes 
in the limit A tending to infinity if d > 0, as is the case when h--* 0, with 
0~ > 0. This settles the proof of the theorem for all critical temperatures 
To(;,) > 0. 

On the other hand, if Tc(2c) = 0, by Theorem 3.4 one has 6 = - 6 '  > 0. 
Therefore, Eq. (4.2) yields also ~F~  But the analysis of Eq. (4.3) 
has to be based on the different behavior of the energy gap at Tc(2c)= 0; 
see proof of Theorem 3.4: for large V, 

1 2c 
[A(ca)]  liE _ V 2'~ 2 (F~ ~ 

822/79,1-2-26 



392 Verbeure and Zagrebnov 

Hence, using expression (4.3), analogous to (4.5), one gets 

~FO (p)  = 1.Alan ~ i2 2 x/Cm 1 } 
[ 4 ( F ~  �9 V2~V~/2+6~-'t [ a ' -  <Qt)n~]  

�9 i ( 2~ ~2FO ( Q ) = 0  
= ham V 2---7 \ 2<  F~ > ,v~ 

which proves the freezing of both  fluctuations as operators  also at 
T~(2~)=O. I 

The equat ion 3 F ~  is the mathemat ica l  expression of the so- 
called soft-mode phenomena  known in the theory of the displacement 
structural phase transitions on the critical line. c5) Here the softening means  
that  the evolution of the zero-mode displacement fluctuation on the critical 
line is frozen. We get also the freezing of the m o m e n t u m  fluctuation 
operator.  Usually in the physicss literature this freezing of  the evolution is 
treated formally by the argument  that  ~2q-o 0 for q ~ 0. However ,  as can 
be concluded from Theorem 4.2, this simple procedure does not give very 
much information on the dynamics on the critical line, because we have to 
take into account that  there 6 # - g '  [see (4.5) and (4.6)]. Here we prove 
that  we really have a zero-frequency mode. 

We remarked above that {~q(.C*)}q~ 0 coincides with the usual 
phonon  spectrum. Insofar as l imq~ 0 g-2q(C*)=0, one can interpret zero as 
the limiting point,  "soft mode,"  of  the spectrum for the nonzero modes. 
A rigorous t reatment  of  this point  of  view leads to an analysis in which 
the exponents g and g' depend on the wave vector q --* 0; see Theorems 3.3 
and 3.4. 

Finally, the analysis of  Theorem 4.2 can also be looked upon from the 
point  of view of the effective Hamil tonian  (2.2). In that  terminology,  the 
result of Theorem 4.2 can be expressed as a r igorous t reatment  of  the 
central peak problem (5) in our  model. 

R E F E R E N C E S  

1. A. Verbeure and V. A. Zagrebnov, J. Stat. Phys. 69:329 (1992). 
2. S. Stamenkovi6, N. S. Ronchev, and V. A. Zagrebnov, Physica 145A:262 (i987). 
3. J. L. van Hemmen and V. A. Zagrebnov, J. Stat. Phys. 53:835 (1988). 
4. N. M. Plakida and N. S. Tonchev, Theor. Math. Phys. 63:504 (1985); 72:269 (1987). 
5. A. D. Bruce and K. A. Cowley, Structural Phase Transitions (Taylor & Francis, London. 

1981). 
6. A. Verbeure and V. A. Zagrebnov, J. Stat. Phys. 75:1137 (1994). 
7. D. Goderis, A. Verbeure, and P. Vets, Prob. Theory Related Fields 82:527 (1989). 



Quantum Fluctuations in an Anharmonic Crystal Model 393 

8. D. Goderis, A. Verbeure, and P. Vets, Commun. Math. Phys. 128:533 (1990). 
9. J. Manuceau, M. Sirugue, D. Testard, and A. Verbeure, Commun. Math. Phys. 32:231 

(1973). 
I0. J. Manuceau, M. Sirugue, F. Rocca, and A. Verbeure, Quasi-free states, in Carg~se 

Lecture Notes in Physics, Vol. 4, D. Kastler, ed. (Gordon and Breach, New York, 
1970). 

11. F. Papangelou, Prob. Theory Related Fields 83:265 (1989). 


